
SCREEN: Stream Data Cleaning under Speed Constraints

Shaoxu Song§ Aoqian Zhang§ Jianmin Wang§ Philip S. Yu‡

§KLiss, MoE; TNList; School of Software, Tsinghua University, China
{sxsong, jimwang}@tsinghua.edu.cn zaq13@mails.tsinghua.edu.cn

‡Department of Computer Science, University of Illinois at Chicago, USA &
Institute for Data Science, Tsinghua University, China psyu@cs.uic.edu

ABSTRACT
Stream data are often dirty, for example, owing to unreli-
able sensor reading, or erroneous extraction of stock prices.
Most stream data cleaning approaches employ a smoothing
filter, which may seriously alter the data without preserv-
ing the original information. We argue that the cleaning
should avoid changing those originally correct/clean data,
a.k.a. the minimum change principle in data cleaning. To
capture the knowledge about what is clean, we consider the
(widely existing) constraints on the speed of data changes,
such as fuel consumption per hour, or daily limit of stock
prices. Guided by these semantic constraints, in this paper,
we propose SCREEN, the first constraint-based approach
for cleaning stream data. It is notable that existing data
repair techniques clean (a sequence of) data as a whole and
fail to support stream computation. To this end, we have
to relax the global optimum over the entire sequence to the
local optimum in a window. Rather than the commonly
observed NP-hardness of general data repairing problems,
our major contributions include (1) polynomial time algo-
rithm for global optimum, (2) linear time algorithm towards
local optimum under an efficient Median Principle, (3) sup-
port on out-of-order arrivals of data points, and (4) adaptive
window size for balancing repair accuracy and efficiency. Ex-
periments on real datasets demonstrate that SCREEN can
show significantly higher repair accuracy than the existing
approaches such as smoothing.

Categories and Subject Descriptors
H.2.0 [Database Management]: General

Keywords
Data repairing; speed constraints

1. INTRODUCTION
Dirty values commonly exist in data streams, e.g., in tradi-

tional sensor data due to the unreliable readers [10]. Even in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright © 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2723730.

0

0.5

1

1.5

2

2.5

5 10 15 20 25 30
P

ri
c
e

Day

Dirty

Repair

Smooth
Dirty

Repair
Smooth

Figure 1: Smoothing filter seriously alters the original cor-
rect data, while the minimum repair under speed constraints
aim to preserve the original information as much as possible

the domains of Stock and Flight where people believed data
are reliable, a large amount of inconsistent data are surpris-
ingly observed [15]. According to the study, the accuracy
of Stock in Yahoo! Finance is 0.93, and the Flight data ac-
curacy in Travelocity is 0.95. Reasons for imprecise values
include ambiguity in information extraction, unit error or
pure mistake. For instance, the price of SALVEPAR (SY)
is misused as the price of SYBASE, which is denoted by SY
as well in some sources. (See more examples of data errors
below.) Such inaccurate values, e.g., taken as the 52-week
low price, may seriously mislead business investment.

A temporal smoothing filter, e.g., via segmentation in slid-
ing windows [13], may modify almost all the data values,
most of which are originally correct/clean. It thus seriously
damages the precision of individual data points (such as
daily stock prices). Indeed, in order to preserve the original
clean information as much as possible, the minimum change
principle is widely considered in improving data quality [1].

To capture the knowledge about what is clean, we notice
that the “jump”of values in a stream is often constrained, so
called speed constraints. In financial and commodity mar-
kets, prices are only permitted to rise or fall by a certain
number of ticks per trading session. In environment moni-
toring, the temperature difference of any two days in a week
should not be greater than 20 degrees. The fuel consumption
of a crane should not be negative and not exceed 40 liters
per hour. We believe that with these meaningful constraints
on value change speed, cleaning could be more accurate.

Example 1. Consider the prices of a stock in 32 trading
days, in Figure 1. As illustrated, large spikes appear in the

827

dirty data (in black), e.g., in day 15, owing to ambiguity in
information extraction as discussed or pure mistake. It may
also be raised by temporary loss of data (days from 23 to 26)
and the subsequent coding of these missing values as zero by
the data collection system.

The smoothing method (in red) modifies almost all the
price values, most of which are indeed accurate. Without
preserving the original clean price of each day, the modified
data values become useless. It is obviously not the best way
for cleaning the stream data.

The speed constraints derived from price limit1 state that
the price difference of two consecutive trading days should
not be greater than 0.5. The maximum speed smax = 0.5
specifies that the increase amount is no larger than 0.5 in a
single trading day from the previous day’s settlement price.
The minimum speed smin = −0.5 indicates that the decrease
should be within 0.5.

With speed constraints, the imprecise value of day 15 can
be detected. It obviously increases too much from the price of
the previous day 14. As shown, the speed constraint-based re-
pair (proposed in this study) preserves more originally clean
price values (in blue).

Challenges. Unlike the existing techniques on smoothing
time series [13], we propose to minimally modify the data
values such that the declared speed constraints are satisfied.
This constraint-based cleaning, however, is non-trivial and
challenging especially in the following aspects:

(1) Soundness. Owing to the inherent hardness of general
data repair problems, a greedy strategy is employed in the
existing repair [4]. It modifies values to eliminate currently
observed violations (w.r.t. the given constraints) in each
round which may introduce new violations to other data
points, and thus evokes another round of repairing. In par-
ticular, the greedy repair could be trapped in local optima,
and thus cannot eliminate all the violations. In other words,
the soundness w.r.t. satisfaction of (speed) constraints is not
guaranteed. According to our empirical study (see details in
Section 6), 40-80% values in the greedily repaired results
may still be in violation w.r.t. the speed constraints.

(2) Online Computing. Typically, data repair techniques
consider a global optimization function on modifying the
entire data [1]. It has to first collect all the data, and then
repair them as a whole. Online cleaning on the streaming
data is not supported. To enable streaming computation, we
have to decompose the global optimum into a list of local
optimum on each data point, respectively. Integral cleaning
can thus be applied by incrementally computing the local
optimal repair on every data point of the sequence in turn.

(3) Out-of-order Arrival. Network latencies or device fail-
ures may cause data to arrive out-of-order [16]. To avoid
output blocking, it is necessary to carry on the cleaning with
the absence of some data, and update the results later when
the delayed data come. The repair on a data point depends
not only on the previous data points, but also on the future
data points. That is, the arrival of each delayed data point
may cause some of the previous data points to be repaired
again. How to efficiently determine the data points affected
and the amount to be adjusted is the main challenge.

1In some markets, the price limit is specified by a certain
percentage. See Section 6.4 for obtaining max/min speed
from such price limit.

(4) Throughput. The speed constraint is often meaningful
in a period with certain lengths. For instance, it is meaning-
less to consider the constraint on temperature of two days
in different years. Such a large window size requires to com-
pare more data points w.r.t. speed constraints, and thus may
result in huge system latencies and memory resource over-
flow. On the other hand, with a small window size, while the
time efficiency is improved, the power of speed constraints
could be limited in repairing (as illustrated in Example 2).
Even worse, such trade-off on window sizes may vary with
the evolving of the arrival rate (the number of data points
arrived in a period). To increase system throughput, it is
promising to devise adaptive window sizes that can auto-
matically balance the cleaning accuracy and efficiency.

Contributions. To the best of our knowledge, this is the
first study on constraint-based stream data cleaning. The
proposed SCREEN (Speed Constraint-based stREam data
clEaNing) is a linear time, constant space cleaning approach.
Our main contributions are summarized as follows.

(1) We formalize the repair problem under speed con-
straints (in Section 2). By considering the entire sequence
as a whole, the monolithic cleaning finds a repaired sequence
that minimally differs from the input. Unlike NP-hardness
of general data repair problems [17, 14], we show that stream
data cleaning under speed constraints can be modeled as a
linear programming problem, i.e., polynomial time solvable.

(2) We devise an online cleaning algorithm (in Section 3).
To support integral cleaning (i.e., incrementally repair one
data point a time in the sequence rather than monolithic
cleaning as a whole), we relax the global optimum over the
entire sequence to the local optimum in a window. The
main idea is to locally compute a data point repair, which
is minimal w.r.t. the upcoming data points in a window and
also compatible with the previously repaired data points.
In particular, to efficiently compute the local optimum, we
propose a novel Median Principle, following the intuition
that a solution with the minimum distance (i.e., as close as
possible to each point) probably lies in the middle of the data
points. It is notable that soundness w.r.t. speed constraint
satisfaction is guaranteed in the devised algorithm.

(3) We extend the algorithm for out-of-order data arrival
(in Section 4). An update of previously repaired results is
performed when the delayed data comes. We further reduce
the latency by heuristically applying the updates.

(4) We propose a sampling-based, adaptive window (in
Section 5). By modeling data points as random samples of
approaching the speed constraints, the criteria in distribu-
tion approximation can be employed to suggest increasing or
reducing the window sizes for acquiring more or less samples.

Finally, experiments on real data demonstrate that our
proposed SCREEN achieves significantly higher repair accu-
racy than the smoothing method [13]. Moreover, compared
to the state-of-the-art data repair method [4], SCREEN with
local optimum shows up to 4 orders of magnitude improve-
ment in time costs without losing much accuracy.

Table 2 in the Appendix lists the frequently used nota-
tions. Proofs of major results can be found in the long ver-
sion technique report [6].

2. MONOLITHIC CLEANING
First, considering a sequence as a whole, we perform mono-

lithic repair towards the globally minimum repair distance.

828

2.1 Preliminary
Consider a sequence x = x [1], x [2], . . . , where each x [i] is

the value of the i-th data point. Each x [i] has a timestamp
t [i]. For brevity, we write x [i] as xi, and t [i] as ti.

A speed constraint s = (smin, smax) with window size w
is a pair of minimum speed smin and maximum speed smax

over the sequence x . We say that a sequence x satisfies the
speed constraint s, denoted by x � s, if for any xi, xj in a

window, i.e., 0 < tj − ti ≤ w , it has smin ≤ xj−xi
tj−ti

≤ smax.

The window w denotes a period of time. In real settings,
speed constraints are often meaningful within a certain pe-
riod. For example, it is reasonable to consider the maximum
walking speed in hours (rather than the speed between two
arbitrary observations in different years), since a person usu-
ally cannot keep on walking in his/her maximum speed for
several years without a break. In other words, it is sufficient
to validate the speed w.r.t. two points xi, xj in a window w =

24 hours, i.e., whether smin ≤ xj−xi
tj−ti

≤ smax, 0 < tj − ti ≤ w .

In contrast, considering the speed w.r.t. two points in an ex-
tremely large period (e.g., two observation points in different
years) is meaningless and unnecessary. Similar examples in-
clude the speed constraints on stock price whose daily limit
is directly determined by the price of the last trading day,
i.e., with window size 1.

The speed constraint s can be either positive (restricting
value increase) or negative (on decrease). In most scenarios,
the speed constraint is natural, e.g., the fuel consumption of
a crane should not be negative and not exceed 40 liters per
hour, while some others could be derived. (See Section 6.4
for a discussion on obtaining speed constraints.)

A repair x ′ of x is a modification of the values xi to x ′
i

where t ′i = ti. Referring to the minimum change principle
in data repairing [1], the repair distance is evaluated by the
difference between the original x and the repaired x ′,

∆(x , x ′) =
∑
xi∈x

|xi − x ′
i |. (1)

Example 2 (Speed constraints, violations, and repairs).
Consider a sequence x = {12, 12.5, 13, 10, 15, 15.5} of six
data points, with timestamps t = {1, 2, 3, 5, 7, 8}. Figure
2(a) illustrates the data points (in black). Suppose that the
speed constraints are smax = 0.5 and smin = −0.5.

For a window size w = 2 in the speed constraints, data
points x3 and x4, with timestamp distance 5 − 3 ≤ 2 in a
window, are identified as violations to smin = −0.5, since
the speed is 10−13

5−3
= −1.5 < −0.5. Similarly, x4 and x5 with

speed 15−10
7−5

= 2.5 > 0.5 are violations to smax = 0.5.

To remedy the violations (denoted by red lines), a repair on
x4 can be performed, i.e., x ′

4 = 14 (the white data point). As
illustrated in Figure 2(a), the repaired sequence satisfies both
the maximum and minimum speed constraints. The repair
distance is ∆(x , x ′) = |10− 14| = 4.

Note that if the window size is too small such as w = 1,
the violations between x3 and x4 (as well as x4 and x5) could
not be detected, since their timestamp distance is 2 > 1. On
the other hand, if the window size is too large, say w = 10,
then all the pairs of data points in x have to be compared.
Although the same repair x ′ is obtained, the computation
overhead is obviously higher (and unnecessary). Neverthe-
less, we propose to determine an adaptive window size (in
Section 5) for balancing accuracy and efficiency.

Figure 2: Possible repairs under speed constraints

2.2 Global Optimum
The cleaning problem is to find a repaired sequence that

satisfies the speed constraints and minimally differs from the
original sequence, called global optimum.

Problem 1. Given a finite sequence x of n data points and
a speed constraint s, the global optimal repair problem is to
find a repair x ′ such that x ′ � s and ∆(x , x ′) is minimized.

A broad class of repair problems have been found to be
NP-hard, for instance, repairing under functional dependen-
cies for categorized data [14], or repairing under denial con-
straints that supports numeric data [17]. It is not the case
for repairing under speed constraints.

We write the global optimal repair problem as

min

n∑
i=1

|xi − x ′
i | (2)

s.t.
x ′
j − x ′

i

tj − ti
≤ smax, ti < tj ≤ ti + w , (3)

1 ≤ i ≤ n, 1 ≤ j ≤ n

x ′
j − x ′

i

tj − ti
≥ smin, ti < tj ≤ ti + w , (4)

1 ≤ i ≤ n, 1 ≤ j ≤ n

where x ′
i , 1 ≤ i ≤ n, are variables in problem solving.

The correctness of result x ′ in the aforesaid problem is
obvious. Formula (2) is exactly the repair distance in for-
mula (1) to minimize. The speed constraints are ensured in
formulas (3) and (4), by considering all the tj in the window
starting from ti, for each data point i in the sequence.

By transforming the problem to a linear programming
(LP) problem, existing solvers can directly be employed.
(See Appendix A for transformation details.)

3. INTEGRAL CLEANING
The global optimum considers the entire sequence as a

whole, and does not support online cleaning over stream-
ing data. To support integral repair w.r.t. the current short
period in a stream, we study the local optimum, which con-
cerns only the constraints locally in a window. By sliding
windows in the sequence, the result of local optimum xlocal
guarantees to satisfy the speed constraints in the entire se-
quence, i.e., also a feasible solution to the constraints in
formulas (3) and (4) of global optimum. Since the global
optimum returns a minimum distance repair xglobal that
satisfies all the constraints, we always have ∆(x , xlocal) ≥
∆(x , xglobal). (For the upper bound, unfortunately, we don’t

829

find any constant factor.) Referring to the minimum change
principle [1] that a repair with lower repair distance is more
likely to be the truth, the repair accuracy of local optimum
may not be as high as that of global optimum. Although we
don’t have a theoretical upper bound of local repair distance
compared to the global one, in practice, the repair distances
of local and global repairs are very close (as shown in Figures
10(b) and 11(b)). Compared to the global optimum, the lo-
cal optimal approach can show significant improvement in
time costs (about 2 order of magnitude improvement in Fig-
ure 11(a)) but without losing much repair accuracy (only a
small decrease of 0.01 in Figure 11(d)).

3.1 Local Optimum
We say a data point xk locally satisfies the speed con-

straint s, denoted by xk � s, if for any xi in the window start-
ing form xk, i.e., tk < ti ≤ tk+w , it has smin ≤ xi−xk

ti−tk
≤ smax.

Problem 2. Given a data point xk in a sequence x and a
speed constraint s, the local optimal repair problem is to find
a repair x ′ such that x ′

k � s and ∆(x , x ′) is minimized.

Similar to the global optimum, we write the local optimal
repair problem as

min

n∑
i=1

|xi − x ′
i | (5)

s.t.
x ′
k − x ′

i

tk − ti
≤ smax, tk < ti ≤ tk + w , 1 ≤ i ≤ n

x ′
k − x ′

i

tk − ti
≥ smin, tk < ti ≤ tk + w , 1 ≤ i ≤ n

where x ′
i , 1 ≤ i ≤ n are variables in problem solving.

The local optimal repair in formula (5) modifies only the
data points i with tk ≤ ti ≤ tk + w in the window of the
current xk, i.e., much fewer variables. The constraints (in
the window) are not sacrificed.

Example 3 (Local optimum). Consider again the sequence
x = {12, 12.5, 13, 10, 15, 15.5} in Example 2 and the speed
constraints smax = 0.5 and smin = −0.5 with window size
w = 5, as illustrated in Figure 2(b).

Let k = 3 be the currently considered data point. Refer-
ring to formula (5), the constraint predicates for the local
optimum on k = 3 are:

x ′
4 − x ′

3

5− 3
≤ 0.5,

x ′
5 − x ′

3

7− 3
≤ 0.5,

x ′
6 − x ′

3

8− 3
≤ 0.5,

x ′
4 − x ′

3

5− 3
≥ −0.5, x ′

5 − x ′
3

7− 3
≥ −0.5, x ′

6 − x ′
3

8− 3
≥ −0.5.

The local optimal solution with the minimum distance is
x ′
3 = 13, x ′

4 = 14, x ′
5 = 15, x ′

6 = 15.5. That is, x ′
3 = x3 = 13

is not necessary to be modified w.r.t. the local optimum on
k = 3.

3.2 The Median Principle
Intuitively, a solution with the minimum distance (i.e., as

close as possible to each point) probably lies in the middle
of the data points. We propose to efficiently search the local
optimum in the scope of such middle data points, namely
the Median Principle (in Proposition 3). Following this
median principle, we devise a linear time algorithm for com-
puting the local optimal repair, instead of O(n3.5L) by LP.

Before presenting the median principle, let us first show
that computing the local optimum w.r.t. xk is indeed equiv-
alent to determine an optimal repair x ′

k, where the solution
of other x ′

i (in formula (5)) can be naturally derived.

3.2.1 Reformulating the Local Optimum Problem
We transform the local optimal repair problem in formula

(5) to a new form w.r.t. only one variable x ′
k. The idea is

to illustrate that there always exists an optimal solution x ′,
whose x ′

i can be derived from x ′
k.

Proposition 1. Let x∗ be a local optimal solution w.r.t. xk.
The following x ′is also local optimal, with x ′

k = x∗
k and

x ′
i =

x ′
k + smax(ti − tk) if

x ′
k−xi
tk−ti

> smax

x ′
k + smin(ti − tk) if

x ′
k−xi
tk−ti

< smin

xi otherwise

(6)

where tk < ti ≤ tk + w , 1 ≤ i ≤ n.

Formula (6) constructs an optimal solution x ′ upon x∗
k ,

where either no change or border change w.r.t. smax and

smin needs to be made. By border changes, we mean
x ′
k−x ′

i
tk−ti

=

smax or
x ′
k−x ′

i
tk−ti

= smin. Intuitively, as illustrated in Figure 3,

all the values in the range of [x ′
k+smin(ti− tk), x

′
k+smax(ti−

tk)] are valid repair candidate for x ′
i . If the speed exceeds

smax, a repair on the “border” drawn by smax is obviously
the closest to xi, i.e., with the minimum repair distance.
We denote g(xi, x

′
k) = |xi − x ′

i | =
x ′
k − xi − smax(tk − ti) if

x ′
k−xi
tk−ti

> smax

xi − x ′
k − smin(tk − ti) if

x ′
k−xi
tk−ti

< smin

0 otherwise

for tk < ti ≤ tk + w , 1 ≤ i ≤ n. The local optimal repair
problem in formula (5) can be rewritten as

min
x ′
k

n∑
i=1

g(xi, x
′
k), (7)

where x ′
k is the only variable in problem solving.

3.2.2 Median Solution in a Finite Set of Candidates
According to Proposition 1, the local optimal repair prob-

lem is equivalent to find a x ′
k that can minimize formula (7).

To this end, we first capture a finite set of candidates for x ′
k,

where the optimal solution can always be found. Let

Xmin
k = {xi + smin(tk − ti) | tk < ti ≤ tk + w , 1 ≤ i ≤ n},

Xmax
k = {xi + smax(tk − ti) | tk < ti ≤ tk + w , 1 ≤ i ≤ n}.

Intuitively, as shown in Figure 4, each candidate in Xmax
k

corresponds to a possible x ′
k such that xi serves as a border

repair w.r.t. x ′
k (as presented in Figure 3). Referring to the

aforesaid discussion on minimum distances of border repairs,
it is not surprising to have the following conclusion.

Lemma 2. We can always find a local optimal solution x∗

w.r.t. xk such that x∗
k ∈ Xmin

k ∪Xmax
k ∪ {xk}.

Let m = |{i | tk < ti ≤ tk + w , 1 ≤ i ≤ n}| be the number
of data points in the window starting from k. It is easy to
see 2m+ 1 candidates in Xmin

k ∪Xmax
k ∪ {xk}.

For any x ′
k, the construction of solution x ′ is indeed to

“shrink”data points in violations to the border. Intuitively,

830

Figure 3: Build solution from x ′
k Figure 4: Capture candidates for x ′

k Figure 5: Compute x ′
k in integral repair

a candidate in the middle of all data points xi prob-
ably has less shrink distances.

Let xmid
k denote the median of all candidates,

xmid
k = median(Xmin

k ∪Xmax
k ∪ {xk}). (8)

The following shows that the median xmid
k is exactly the

optimal solution to the problem in formula (7), and can be
used to build the local optimal solution by Proposition 1.

Proposition 3 (The Median Principle). A solution x ′ with
x ′
i determined by formula (6) and x ′

k = xmid
k is local optimal.

Example 4 (Candidates and local optimum, Example 3
continued). Consider data points 4, 5 and 6, in Figure 2(b),
whose timestamps are within t3+w, w.r.t. the current k = 3.
Each data point suggests two candidates w.r.t. smin and smax

for Xmin
3 and Xmax

3 , respectively. For instance, x4 = 10
contributes 10−0.5(5−3) = 9 in Xmax

3 and 10+0.5(5−3) =
11 in Xmin

3 . Finally, the candidate sets are

Xmin
3 ={11, 17, 18}, Xmax

3 ={9, 13, 13}.

According to formula (8), we have xmid
3 = 13.

Referring to Proposition 3, by x ′
3 = xmid

3 and formula (6),
we build a solution x ′

3 = 13, x ′
4 = 14, x ′

5 = 15, x ′
6 = 15.5. It

is exactly the local optimal solution in Example 3.

3.3 Streaming Computation
The integral cleaning algorithm is to iteratively determine

the local optimal x ′
k, for k = 1, 2, Let us first assume

that data points come in-order, i.e., tj < ti for any j < i.
(The handling of out-of-order arrival will be introduced in
the next section.)

3.3.1 Candidate Range
Consider xk, where x ′

1, . . . , x
′
k−1 have been determined in

the previous steps. Referring to the speed constraints, each
fixed x ′

j , tk − w ≤ tj < tk, 1 ≤ j < k, indicates a range of
candidates for x ′

k, i.e., [x
′
j + smin(tk − tj), x

′
j + smax(tk − tj)].

The following proposition states that considering the last
x ′
k−1 is sufficient to determine the range of possible repairs
for x ′

k. The rationale is that for any 1 ≤ j < i < k, x ′
i should

be in the range specified by x ′
j as well. In other words, the

candidate range of x ′
k specified by x ′

i is subsumed in the
range by x ′

j .

Proposition 4. For any 1 ≤ j < i < k, tk − w ≤ tj <
ti < tk, we have x ′

j + smin(tk − tj) ≤ x ′
i + smin(tk − ti), and

x ′
i + smax(tk − ti) ≤ x ′

j + smax(tk − tj).

For instance, as illustrated in Figure 5, the candidate
range of x ′

k specified by x ′
k−2 subsumes that by x ′

k−1. Con-
sequently, we can obtain a tight range of candidates for x ′

k

by x ′
k−1, i.e., [x

min
k , xmax

k] as presented in Figure 5, where

xmin
k = x ′

k−1 + smin(tk − tk−1), (9)

xmax
k = x ′

k−1 + smax(tk − tk−1).

The repair problem thus becomes to finding the local op-
timum x ′

k in the range of [xmin
k , xmax

k].

3.3.2 Optimal Solution in Candidate Range
Formula (8) gives a repair candidate xmid

k suggested by xi
after xk (tk < ti), while formula (9) indicates a candidate
range [xmin

k , xmax
k] specified by xk−1 before xk.

If the suggested local optimal solution xmid
k in formula (8)

drops into the range of [xmin
k , xmax

k] in formula (9), the opti-
mal solution is directly obtained, i.e., x ′

k = xmid
k . Otherwise,

we need to re-calculate the local optimum w.r.t. the range
[xmin

k , xmax
k].

Fortunately, we have the following monotonicity of the
function in formula (7).

Proposition 5. For any u1, u2, v1, v2 ∈ Xmin
k ∪Xmax

k ∪{xk}
such that u1 ≤ u2 ≤ xmid

k ≤ v1 ≤ v2, we have

n∑
i=1

g(xi, u1) ≥
n∑

i=1

g(xi, u2) ≥
n∑

i=1

g(xi, x
mid
k),

n∑
i=1

g(xi, x
mid
k) ≤

n∑
i=1

g(xi, v1) ≤
n∑

i=1

g(xi, v2).

That is, for any candidate u < xmax
k < xmid

k , it always has∑n
i=1 g(xi, u) ≥

∑n
i=1 g(xi, x

max
k). xmax

k is thus the optimal

solution in the range of [xmin
k , xmax

k]. Similar conclusion can
also be made for v > xmin

k > xmid
k .

Consequently, according to Proposition 5, the local opti-
mal solution is directed computed by

x ′
k =

xmax
k if xmax

k < xmid
k

xmin
k if xmin

k > xmid
k

xmid
k otherwise

(10)

Algorithm 1 presents the integral repair of a sequence x
w.r.t. local optimum under the speed constraint s. For each
data point k in the sequence, k = 1, 2, . . . , n, Lines 3 and 4
computes the candidate range in formula (9). By considering
all the succeeding data points i in the window of k, Line
10 calculates xmid

k in formula (8). Finally, x′
k is obtained

following the computation in formula (10).
It is easy to see that the number of distinct data points

in a window is at most w . The median in the window can
be trivially found in O(w), i.e., the average complexity of
quickselect [9]. Considering all the n data points in the se-
quence, Algorithm 1 runs in O(nw) time. For a fixed w , it is

831

Algorithm 1: Local(x , s)

Data: an ordered sequence x and speed constraints s
Result: a repair x ′ of x w.r.t. local optimum

1 for k ← 1 to n do
2 Xmin

k ← ∅; Xmax
k ← ∅;

3 xmin
k ← x ′

k−1 + smin(tk − tk−1), or −∞ for k = 1;
4 xmax

k ← x ′
k−1 + smax(tk − tk−1), or +∞ for k = 1;

5 for i← k + 1 to n do // compute xmid
k

6 if ti > tk + w then
7 break;

8 Xmin
k ← Xmin

k ∪ {xi + smin(tk − ti)};
9 Xmax

k ← Xmax
k ∪ {xi + smax(tk − ti)};

10 xmid
k ← median(Xmin

k ∪Xmax
k ∪ {xk});

11 if xmax
k < xmid

k then // compute x ′
k

12 x ′
k ← xmax

k ;

13 else if xmin
k > xmid

k then
14 x ′

k ← xmin
k ;

15 else
16 x ′

k ← xmid
k ;

17 return x ′

a linear time, constant space algorithm. In practice, to min-
imize the changes, we may heuristically skip the repairing
on those points xk that satisfy the speed constraints with its
neighbors, i.e., xmin

k ≤ xk ≤ xmax
k and xmin

k+1 ≤ xk+1 ≤ xmax
k+1 .

Example 5 (Example 4 continued). Consider the next data
point k = 4 in the current sequence {12, 12.5, 13, 10, 15, 15.5},
in Figure 2(b). According to formula (9), a candidate range
[xmin

k , xmax
k] = [12, 14] is given by x ′

3 = 13 (which is deter-
mined in the previous step in Example 4).

Following the same line of Example 4, we compute Xmin
4 =

{16, 17} and Xmax
4 = {14, 14} by points 5 and 6 that are in

the window of point 4. It follows xmid
4 = 14, which is in

the candidate range [12, 14]. According to formula (10), the
local optimal repair on k = 4 is x ′

4 = 14.
The integral repair moves on to the next k = 5 and ter-

minates when reaching the end of the sequence. A repaired
sequence {12, 12.5, 13, 14, 15, 15.5} is finally returned.

4. OUT-OF-ORDER CLEANING
When a delayed data point comes, the straightforward ap-

proach is to insert the data point into the right position of
the sequence according to timestamps, and recompute all
the results for data points near (and after) the inserted po-
sition. However, complete re-computation is not necessary.
Instead, we can efficiently update the repairs over the previ-
ously computed results. To further reduce the computation,
we propose a heuristic strategy that updates the results only
when the previous results are known to be invalid for sure.

4.1 Updating Local Optimum
Consider an out-of-order arrival xk, tk < tk−1. We reorder

the sequence by timestamps, i.e., removing xk and inserting
it as a new x` where x` = xk, t`−1 < t` < t`+1, ` < k.

The updates introduced by x` include two aspects: (1) for
xj , j < `, where x` suggests candidates for determine xmid

j ;

and (2) for xi, i > `, whose candidate range [xmin
i , xmax

i] is
influenced (directly or indirectly) by x ′

`.

Figure 6: Update x ′
` and compute x ′

` in heuristic

First, for any xj with t`−w ≤ tj < t`, 1 ≤ j < `, we update
its median by adding the candidates w.r.t. the new x` in
Xmin

j and Xmax
j (in Lines 6 and 7 in Algorithm 2). It is worth

noting that xmid
j may remain unchanged after introducing

two new candidates by x`. If one of the candidate is greater
than xmid

j and the other is less than xmid
j , obviously, xmid

j is

still the median in the new set Xmin
j ∪Xmax

j ∪ {xj}.

Proposition 6. For any xj with t` −w ≤ tj < t`, if smin ≤
xmid
j −x`
tj−t`

≤ smax for the new arrived x`, x
mid
j is not changed.

Once the medians are updated, we recalculate the repairs
w.r.t. the new medians. It further leads to the updates
on succeeding ones (including i > `, with candidate range
[xmin

i , xmax
i] determined by previous repairs).

Algorithm 2 presents the update of x ′ when a delayed x`
is newly observed. The algorithm is called before Line 2 of
Algorithm 1, when an out-of-order data point comes and is
placed in the position ` after reordering the sequence.

Algorithm 2: Update(x ′, s, `, k)

Data: a repair x ′ with the first k data points ordered
by timestamps and a newly observed x`, ` < k

Result: an updated repair x ′ of x w.r.t. local optimum
1 compute xmid

` by formula (8);
2 for i← `− 1 to 1 do
3 if ti < t` − w then
4 break;

5 if
xmid
j −x`
tj−t`

< smin or
xmid
j −x`
tj−t`

> smax then

6 Xmin
j ← Xmin

j ∪ {x` + smin(tj − t`)};
7 Xmax

j ← Xmax
j ∪ {x` + smax(tj − t`)};

8 update xmid
j by formula (8);

9 for j ← i+ 1 to k do
10 update xmin

i , xmax
i by formula (9);

11 update x ′
i by formula (10);

12 if x ′
i is unchanged, i > ` then

13 break;

14 return x ′

Example 6 (Out-of-order update). Let x = {5, 4, 5, 5, 5}
be the currently processed sequence, with timestamps t =
{1, 2, 4, 5, 6}, as illustrated in Figure 6(a). The speed con-
straints are smax = 2 and smin = −2 with window size w = 4.

Suppose that the next data point is x6 = 7 with timestamp
t6 = 3 < t5 = 6, i.e., an out-of-order arrival. We first
reorder the sequence by timestamps, x = {5, 4, 7, 5, 5, 5} and
t = {1, 2, 3, 4, 5, 6}, where the new data point locates in ` =

832

3. Referring to the window size w = 4, data points 1 and 2
are influenced by the new point.

For x1, suppose that xmid
1 = 5 before the new point ` is

inserted. We compute
xmid
1 −x`
t1−t`

= 5−7
1−3

= 1, which is in the

range [smin, smax]. According to Proposition 6, xmid
1 = 5 will

not be changed after inserting `. For x2, we have xmid
2 = 4

before inserting ` and 4−7
2−3

= 3 > smax. That is, xmid
2 should

be updated after inserting `, having xmid
2 = 5. And xmid

3 = 7
for ` = 3 can also be computed by formula (8). Since xmid

2

is updated and xmid
3 is newly introduced, the repair should be

refreshed following formula (10), i.e., x ′ = {5, 5, 7, 5, 5, 5}.

4.2 Heuristic
Although exact result w.r.t. local optimum is guaranteed,

the update (possibly on all the data points near and after
x`) is costly. If a data point is delayed at the very beginning
of the sequence, almost the entire sequence may be updated.

Heuristically, we could choose to update only when the
existing repairs are found to be invalid for sure. That is,
after inserting the data point on position `, the existing x ′

violates speed constraints (no matter what the value x ′
` is).

Such invalid scenario occurs, because of the disagreement
on the possible values for x ′

`. The existing repair x ′
`−1 speci-

fies a range of possible repairs for x ′
`, as presented in formula

(9). Symmetrically, x ′
`+1 as an existing repair also indicates

another range for x ′
`. Contradiction between two ranges may

occur (if x ′
`+1 is not in the window of x ′

`−1).
We capture the minimum and maximum candidates for x ′

`

that are specified by x ′
`−1 and x ′

`+1 together,

xmin
` = max(x ′

`−1 + smin(t` − t`−1), x
′
`+1 + smax(t` − t`+1)),

xmax
` = min(x ′

`−1 + smax(t` − t`−1), x
′
`+1 + smin(t` − t`+1)),

(11)

where t`+1 − t`−1 ≤ 2 · w . Here, xmin
` takes the maximum

of bounds (in formula (9)) determined by ` − 1 and ` + 1,
as illustrated in Figure 6(b), and similarly xmax

` takes the
lower one of the bounds given by ` − 1 and ` + 1. In other
words, a x ′

` within the range [x ′
`−1, x

′
`+1] will satisfy the speed

constraints w.r.t. both `− 1 and `+ 1.
Obviously, if xmin

` > xmax
` , contradiction occurs. That is,

the current repair x ′ is invalid, and the update by Algorithm
2 should be performed.

On the other hand, if valid candidates exist, i.e., xmin
` ≤

xmax
` , we can heuristically select a repair x ′

` in [xmin
` , xmax

`]
without updating the others. As shown in Lines 3 and 4
in Algorithm 3, x` is taken as xmid

` in heuristic. According
to formula (10), x ′

` leaves unchanged if x` is in [xmin
` , xmax

`].
Otherwise, the border xmin

` or xmax
` , which is closer to x`, is

assigned as the repair x ′
`.

A natural concern is how often the full Update in Line 7
in Algorithm 3 occurs. We show in the following conclusion
that Update would never be performed if the time interval
t`+1 − t`−1 is within w .

Proposition 7. For any xmin
` > xmax

` computed by formula
(11), it always has w < t`+1 − t`−1 ≤ 2 · w.

In other words, the Update may occur only when t`−1 and
t`+1 are far away (> w). In practice, such large “breaks”
appear rarely especially in continuous monitoring streams.
By greatly avoiding Update, the Heuristic approach can sig-
nificantly reduce the repair time costs (in the experiments).

Algorithm 3: Heuristic(x ′, s, `, k)

Data: a repair x ′ with the first k dat points ordered by
timestamps and a newly observed x`, ` < k, and
speed constraints s

Result: an updated repair x ′ of x w.r.t. local optimum
1 compute xmin

` , xmax
` by formula (11);

2 if xmin
` ≤ xmax

` then
3 xmid

` ← x`;
4 compute x ′

` by formula (10);
5 return x ′

6 else
7 return Update(x ′, s, `, k)

Example 7 (Heuristic, Example 6 continued). Consider
again the reordered sequence, x = {5, 4, 7, 5, 5, 5} with times-
tamps t = {1, 2, 3, 4, 5, 6}, where ` = 3 is the newly inserted
data point, as illustrated in Figure 6(a).

Referring to formula (9), data point `−1 gives a candidate
range [2, 6] for x ′

` w.r.t. the speed constraints smax = 2 and
smin = −2. Symmetrically, another candidate range [3, 7]
for x ′

` is also determined by `+1. By taking the intersection
of two candidate ranges, we have [xmin

` , xmax
`] = [3, 6] as

defined in formula (11). Since xmin
` ≤ xmax

` , we heuristically
determine the repair x ′

3 = 6 without update the other repair
results, having x ′ = {5, 4, 6, 5, 5, 5}.

5. ADAPTIVE WINDOWS
The trade-off in setting window size w for speed con-

straints is: small windows fail to capture the minimum re-
pair (e.g., if w=1 in Figure 2(b) of Example 2), while large
windows obviously increase the computation overhead (as
more constrained data pairs need to be specified in formulas
(3) for global optimum or (5) for local optimum). It is non-
trivial to predefine an appropriate window size. Even worse,
the arrival rate (the number of data points in a period) may
vary. Rather than a fixed window size, we propose to auto-
matically determine the adaptive window size w online.

To tackle the aforesaid trade-off in choosing window sizes,
we introduce a statistical sampling-based method. The idea
is to model data points as random samples of approaching
the speed constraints. The adaption of windows, extending
or shrinking, is thus performed based on the closeness to the
extreme speeds (smax or smin) of the samples, grounded in
statistical sampling theory.

Sampling Model. Consider a window starting from i with
length w , Wi = {j | 0 < tj − ti ≤ w}. Assume that the (re-
paired) data points in the window satisfy speed constraint s.

Intuitively, the speed constraint (say smax) takes strong
effect, if a xj in the window approaches xi + smax(tj − ti),

i.e., the speed
xj−xi
tj−ti

approaches the constraint smax. On the

other hand, the speed constraints are useless, if the speed
xj−xi
tj−ti

is far away from smin or smax. Let

pi,j =

xi−xj
ti−tj

− smin

smax − smin
(12)

denote the degree of xj approaching the (maximum) speed

constraints, having 0 ≤ pi,j ≤ 1. When the speed
xj−xi
tj−ti

=

smax, we have pi,j = 1. And pi,j = 0 corresponds to the

833

Figure 7: Adjust w based on closeness to speed constraints

speed equal to smin. In contrast, if the speed is far away from
the speed constraints, e.g., in the middle of 1

2
(smax + smin)

with pi,j = 0.5, the speed constraint is useless.
Assume that each data point in the window has the same

probability p of approaching the maximum speed constraint
w.r.t. xi. The probability p can be estimated by the aver-
age degree of data points approaching the maximum speed

constraints, pi =
∑

j∈Wi
pi,j

|Wi|
.

We view each data point as a random sample of approach-
ing the maximum speed constraint. The total number of
data points that reach smax, denoted by S , is thus a ran-
dom variable that follows binomial distribution, i.e., S ∼
B(|Wi|, pi). Referring to the standard probability theory,
the expectation and variance can be expressed as E(S) =
|Wi| · pi and Var[S] = |Wi| · pi · (1− pi).

Adaptive Window. Next, we introduce how to use the afore-
said binomial sampling model to adjust the window sizes.
Intuitively, the closer the speeds of data points to the con-
straints smin and smax, the more necessary the constraints
are to guard the correctness of data points. That is, the
window could be enlarged to involve more data points. On
the other hand, if the observed speeds are far from the bor-
der smin and smax, the constraints are useless. The windows
may shrink for computation efficiency.

In normal approximation [2], a reasonable approximation
to B(n, p) is given by the normal distribution N (np, np(1−
p)). This approximation generally improves as n increases
and is better when p is not near to 0 or 1. Rules are designed
to decide whether n is large enough, and p is far enough
from the extremes of zero or one. A commonly used rule
states that the normal approximation is appropriate only if
everything within 3 standard deviations of its mean is within
the range of possible values, i.e., np± 3

√
np(1− p) ∈ [0, n].

In this sense, we can use the evaluation of normal ap-
proximation (whether the samples are not enough) to infer
whether the window size is not large enough, or (whether
the probability is far enough from 0 or 1) to infer whether
the window size is too large such that speed constraints are
useless (with data points far from the speed constraints smin

and smax). Referring to the rule for normal approximation,

if E(S)±3
√

Var[S] ∈ [0, |Wi|], the samples are large enough
and the probability pi is far enough from the extremes of
zero or one, i.e., far away from the speed constraints (which
are useless). Thereby, we reduce the window size, e.g., ac-
cording to w ′ in Figure 7 in the following Example 8. On the
other hand, if E(S)±3

√
Var[S] 6∈ [0, |Wi|], more samples are

needed by increasing the window size (e.g., as suggested by

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

F
a
u
lt
 d

is
ta

n
c
e

Error rate

(a)

dirty vs. truth
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

R
e
p
a
ir
 d

is
ta

n
c
e

Error rate

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

R
M

S
 e

rr
o
r

Error rate

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
c
c
u
ra

c
y

Error rate

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
In

c
o
n
s
is

te
n
c
y
 r

a
te

Error rate

(e)
Global
Local

Holistic
Sequential

SWAB(smoothing)
WMA(smoothing)

EWMA(smoothing)

Figure 8: Varying error rates (FUEL)

w in Figure 7). (Please refer to Appendix C for more details
on normal approximation and adjusting window sizes.)

Example 8. Consider two windows W1 = {2, 3, 4, 5} with
size w and W ′

1 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} with size w ′ in
Figure 7. By formula (12), we compute p1,2 = 1, since x2
exactly reaches the maximum speed w.r.t. x1. Similar p1,j
can be computed for j = 3, . . . , 11, e.g., p1,8 = 0.5 which is
neither close to smax nor smin.
For W1, the probability p1 = 0.91 is computed by the av-

erage of p1,2, . . . , p1,5. The E(S) ± 3
√

Var[S] values corre-

sponding to the 4 samples in W1 are 4·0.91±3
√
4 · 0.91 · 0.09,

i.e., 1.92 or 5.35. The later one does not belong to [0,4]. The
window W1 suggests to extend the window size.

For W ′
1 with 10 samples, the computed probability is p′1 =

0.52. The E(S)±3
√

Var[S] values are 0.46 and 9.93, in the
range of [0,10]. That is, the window W ′

1 could shrink.

Finally, for each data point i, it makes a decision on en-
larging or shrinking the window sizes (for the succeeding
windows). Such decision making may also be conducted pe-
riodically, e.g., in every 10 minutes.

6. EXPERIMENT
In the experimental evaluation, we employ 3 real datasets,

FUEL, STOCK and GPS. (Please refer to Appendix D.1 for
dataset preparation.) The evaluation criteria includes: 1)
the fault distance between dirty and truth data, 2) the re-
pair distance between dirty input and repair result, 3) the
RMS error [10] between the repair result and truth data, 4)
the repair accuracy relative to the dirty data, 5) the rate
of inconsistent data retained in the repair result. (See Ap-
pendix D.2 for the relationships among the measures.)

834

 0

 5

 10

 15

 20

 25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

F
a
u
lt
 d

is
ta

n
c
e

Error rate

(a)

dirty vs. truth
 0

 5

 10

 15

 20

 25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

R
e
p
a
ir
 d

is
ta

n
c
e

Error rate

(b)

 0

 5

 10

 15

 20

 25

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

R
M

S
 e

rr
o
r

Error rate

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
c
c
u
ra

c
y

Error rate

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

In
c
o
n
s
is

te
n
c
y
 r

a
te

Error rate

(e)
Global
Local

Holistic
Sequential

SWAB(smoothing)
WMA(smoothing)

EWMA(smoothing)

Figure 9: Varying error rates (STOCK)

Table 1: GPS data with manually labeled ground truth

Method Repair
distance

RMS
error

Accuracy Inconsistency

Global 0.1198 0.0658 0.6881 –

Local 0.1311 0.0682 0.6886 –

Holistic 0.1197 0.0653 0.6842 0.0403

Sequential 0.9589 0.9646 0.0001 0.1285

SWAB 0.6368 0.6372 0.0649 0.0639

WMA 1.5700 1.5627 0.0184 0.1492

EWMA 1.7054 1.6993 0.0166 0.0556

6.1 Comparison with Existing Approaches
In the first experiment, we compare our proposed SCREEN

with Global and Local optimum to the following approaches
in two categories: 1) smoothing-based, SWAB [13], WMA
and EWMA [7], and 2) constraint-based, Holistic repair [4]
and repair with Sequential Dependency [8].

Figures 8 and 9 consider various error rates (denoting the
amount of injected errors) with data sizes (the number of
data points/the length of the sequence) 3k and 2k, in FUEL
and STOCK, respectively. Figures 10 and 11 study the scal-
ability by varying data sizes (with error rate 0.3 and 0.2).
The full results of all compared methods are in Figures 18
and 19. Table 1 presents the results over the GPS dataset
with manually labeled ground truth.

First, it is not surprising that RMS error of all the smooth-
ing methods is high, while their accuracy is lower, compared
with our proposed Global or Local (e.g., in Table 1). As illus-
trated in Figure 8(b), the repair distances of SWAB, WMA

 0.01

 0.1

 1

 10

 100

 1000

 10000

6k 12k 18k 24k 30k

T
im

e
 c

o
s
t
(s

)

Data size

(a)

Global
Local

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

6k 12k 18k 24k 30k

R
e
p
a
ir
 d

is
ta

n
c
e

Data size

(b)

Global
Local

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

6k 12k 18k 24k 30k

R
M

S
 e

rr
o
r

Data size

(c)

Global
Local

 0

 0.2

 0.4

 0.6

 0.8

 1

6k 12k 18k 24k 30k

A
c
c
u
ra

c
y

Data size

(d)

Global
Local

Figure 10: Global vs. Local (FUEL)

 0.001

 0.01

 0.1

 1

 10

 100

2k 4k 6k 8k 10k

T
im

e
 c

o
s
t
(s

)

Data size

(a)

Global
Local

 0

 5

 10

 15

 20

2k 4k 6k 8k 10k

R
e
p
a
ir
 d

is
ta

n
c
e

Data size

(b)

Global
Local

 0

 1

 2

 3

 4

 5

2k 4k 6k 8k 10k

R
M

S
 e

rr
o
r

Data size

(c)

Global
Local

 0

 0.2

 0.4

 0.6

 0.8

 1

2k 4k 6k 8k 10k

A
c
c
u
ra

c
y

Data size

(d)

Global
Local

Figure 11: Global vs. Local (STOCK)

and EWMA smoothing are very similar. These smoothing
methods show similar RMS error and accuracy as well in
Figures 8(c)(d). It is notable that the inconsistency rates
of smoothing are very high in Figure 8(e). That is, a large
number of data points are still in violation w.r.t. speed con-
straints. The corresponding accuracy of smoothing is thus
significantly lower than our proposal in Figure 8(d).

Holistic repair, the approximation of our Global as in-
troduced in Appendix B, show similar accuracy as Global.
However, its time cost is close to the exact approach Global
as well. Even worse, as shown in Figures 8(e), the inconsis-
tency rate of Holistic is high. An inconsistency rate 0.4 de-
notes that about 40% data points are still involved in viola-
tion to speed constraints, after Holistic repair. For STOCK
with window size w = 1, there are fewer constraint pred-
icates declared between data points. Therefore, inconsis-
tencies remained after Holistic repair are fewer as well, i.e.,
lower inconsistency rate in Figures 9(e).

Sequential dependencies (SDs) consider the constraints on
value difference (e.g., ≤ 5) of two consecutive data points.
When the time interval of any two consecutive data points
is the same, for instance, in every trading day or in every 5
minutes, SDs denote exactly the speed constraints. There-

835

 0.1

 1

 10

 100

0.2 0.4 0.6 0.8 0.1

T
im

e
 c

o
s
t
(s

)

Delay rate

(a)

Update
Heuristic

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 0.1

A
c
c
u
ra

c
y

Delay rate

(b)

Update
Heuristic

 0.1

 1

500 1000 2000 3000 5000

T
im

e
 c

o
s
t
(s

)

Delay time

(c)

Update
Heuristic

 0

 0.2

 0.4

 0.6

 0.8

 1

500 1000 2000 3000 5000

A
c
c
u
ra

c
y

Delay time

(d)

Update
Heuristic

Figure 12: Evaluation on out-of-order (FUEL)

 0.01

 0.1

 1

0.2 0.4 0.6 0.8 0.1

T
im

e
 c

o
s
t
(s

)

Delay rate

(a)

Update
Heuristic

 0

 0.2

 0.4

 0.6

 0.8

 1

0.2 0.4 0.6 0.8 0.1

A
c
c
u
ra

c
y

Delay rate

(b)

Update
Heuristic

 0.01

 0.1

 1

100 300 500 1000 2000

T
im

e
 c

o
s
t
(s

)

Delay time

(c)

Update
Heuristic

 0

 0.2

 0.4

 0.6

 0.8

 1

100 300 500 1000 2000

A
c
c
u
ra

c
y

Delay time

(d)

Update
Heuristic

Figure 13: Evaluation on out-of-order (STOCK)

fore, in STOCK, the accuracy of Sequential is relatively
high, while its RMS error is low (compared with SWAB).
However, if the data point arrival is dynamic without a fixed
time interval, such as FUEL, SDs can no longer denote the
speed semantics. Consequently, the performance of Sequen-
tial is low in Figures 8(c)(d), even worse than SWAB.

The repair distance of Global is always lower than that
of Local, in Figures 10(b) and 11(b). The corresponding
RMS error of Global is lower in Figures 10(c) and 11(c) and
the repair accuracy of Global is higher in Figures 10(d) and
11(d). Nevertheless, the Local method have very similar
repair distance and accuracy to Global, especially compared
with the other baseline approaches in Figures 18 and 19. The
results verify our analysis (e.g., ∆(x , xlocal) ≥ ∆(x , xglobal)
at the beginning of Section 3), and demonstrate the time
and accuracy performance of Local optimum compared to
Global in practice.

6.2 Evaluation over Streaming Data
Next, we evaluate the online cleaning over streaming data.

Since none of the existing methods support out-of-order ar-
rivals, we mainly compare the proposed Update technique in
Algorithm 2 and Heuristic in Algorithm 3 for handling de-

 0.001

 0.01

 0.1

 1

 10

 100

 1000

10 50 100
500

1000
1500

3000
5000

10000

IN
F

T
im

e
 c

o
s
t
(s

)

Window size

(a)

Global

Local

SWAB
WMA

EWMA

 0

 0.2

 0.4

 0.6

 0.8

 1

10 50 100
500

1000
1500

3000
5000

10000

IN
F

A
c
c
u
ra

c
y

Window size

(b)

Local
SWAB
WMA

EWMA
Global

Figure 14: Evaluation on various window sizes

 0.0001

 0.001

 0.01

 0.1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
im

e
 c

o
s
t
(s

)

Error rate

(a)

T=Adaptive
T=10

T=100
T=1000
T=1500

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
c
c
u
ra

c
y

Error rate

(b)

T=Adaptive
T=10

T=100
T=1000
T=1500

 10000

 100000

 1e+06

 1e+07

 1e+08

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

T
h
ro

u
g
h
o
u
tp

u
t

Error rate

(c)

T=Adaptive
T=10

T=100
T=1000
T=1500

 0

 200

 400

 600

 800

 1000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

A
d
a
p
ti
v
e
 w

in
d
o
w

 s
iz

e

Error rate

(d)

Adaptive
w=10

w=100
w=1000
w=1500

Figure 15: Evaluation on adaptive window sizes

layed data points. Figures 12 and 13 report the out-of-order
evaluation, by varying delay rate (e.g., 0.1 denotes that 10%
of data points are delayed in arrival) and delay time (refer-
ring to the average distance between the actual timestamp
and the arrival time). Settings of delay time for Figures
12(a)(b) and 13(a)(b) are 5000 and 1000, respectively, and
the delay rate in Figures 12(c)(d) and 13(c)(d) is 0.05.

Generally, the larger the delay rate or delay time is, the
higher the time costs are. For Heuristic, since the full update
occurs only when the previously repaired results are found
to be wrong for sure, its time cost is significantly lower. As
shown in Figures 12 and 13, Heuristic method has compa-
rable accuracy with Update, while the former one can show
1-2 orders of magnitude improvement in time costs.

6.3 Evaluation on Adaptive Windows
This experiment evaluates the cleaning performance under

various window sizes of speed constraints. Since the window
size is fixed to 1 for STOCK, we focus on the FUEL dataset
(with data size 3k, and error rate 0.05 for Figure 14).

As shown in Figure 14, the Local method requires a bit
larger window size (e.g., 100) to achieve the same accuracy
of Global (at 50). For a window larger than 500, both Global
and Local have considerably high accuracy. The time cost of
an infinite window (INF, throughout the lifetime of the data
stream) is extremely high, while a smaller window size (e.g.,
500) that has much lower time cost can achieve an accuracy
as high as INF. The results verify that, in a real setting, it is
not necessary to consider extremely large windows, since a
small window size is sufficient to achieve the same accuracy
with significantly lower time cost. On the other hand, if the
window size is too small, e.g., w = 10 in Figure 14, many

836

 0

 0.05

 0.1

 0.15

 0.2

(-200,-180]

(-160,-140]

(-120, -100]

(-80, -60]

(-40, -20]

D
is

tr
ib

u
ti
o
n

Speed (L/h)

(a) FUEL

 0

 0.05

 0.1

 0.15

 0.2

 0.25

(1,2]

(3,4]

(5,6]

(7,8]

(9,10]

D
is

tr
ib

u
ti
o
n

Speed (m/s)

(b) GPS

Figure 16: Statistical distribution on speeds

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.2
-2 -4 -20

-40
-80

-100
-120

-160

A
c
c
u
ra

c
y

Smin (L/h)

(a) FUEL

 0

 0.2

 0.4

 0.6

 0.8

 1

4 5 6 6.5 7 8 9 10 21

A
c
c
u
ra

c
y

Smax (m/s)

(b) GPS

 0

 0.2

 0.4

 0.6

 0.8

 1

0.001

0.01
0.1

0.3
0.7

1 3 8 15 40

A
c
c
u
ra

c
y

Smax (-Smin, $/d)

(c) STOCK
Local

SWAB(smoothing)
WMA(smoothing)

EWMA(smoothing)

Figure 17: Evaluation on various speed constraints

data points will be out of control by the speed constraints,
and fewer repairs are performed. The repair accuracy is thus
lower (even lower than the smoothing baselines).

Nevertheless, as illustrated in Figure 15, our adaptive win-
dow technique can determine an appropriate window size
(around 700), which shows relatively low time cost and high
throughput without losing much accuracy. These results
verify our trade-off analysis between cleaning accuracy and
efficiency in Section 5. In other words, our proposed adap-
tive windows can balance the effectiveness and efficiency.

6.4 Capturing Speed Constraints
We note that in most scenarios, the speed constraint is

natural, e.g., the fuel consumption of a crane should not be
negative (smax = 0 for FUEL), while some others could be
derived. According to our consultation with experts of the
equipment, the fuel consumption does not exceed 40 liters
per hour (smin = −40). For STOCK, the speed constraints
are naturally derived by the business semantics. The price
limit in the market declares that the increase or decrease of
daily price should not exceed l · r where l is the price of the
last trading day and r = 10% is a percentage. We consider
the highest price h = 60 in the dataset, having l ≤ h for any
day in the period. The maximum speed smax (with w = 1)
in the period is thus h ·r = 6, while smin = −h ·r = −6. The
GPS dataset is collected by a person carrying a smartphone
and walking around at campus. We require 7 meters per
second as the maximum walking speed of the person.

Nevertheless, for a particular domain where speed knowl-
edge is not available, the speed constraints can be extracted
from data. We consider the statistical distribution of speeds
by sampling data pairs over FUEL and GPS in Figure 16.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

6k 12k 18k 24k 30k

T
im

e
 c

o
s
t
(s

)

Data size

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

6k 12k 18k 24k 30k

R
e
p
a
ir
 d

is
ta

n
c
e

Data size

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

6k 12k 18k 24k 30k

R
M

S
 e

rr
o
r

Data size

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

6k 12k 18k 24k 30k

A
c
c
u
ra

c
y

Data size

(d)

Global
Local

Holistic
Sequential

SWAB(smoothing)
WMA(smoothing)

EWMA(smoothing)

Figure 18: Scalability (FUEL)

As mentioned, the FUEL meter change is non-increasing
(smax = 0) during consumption, while the walking speed for
GPS is non-negative (smin = 0). Thereby, we mainly ob-
serve the speeds for determining smin for FUEL and smax

for GPS. Referring to statistics, it is to determine a confi-
dence interval that acts as a good estimate of the unknown
population parameter smin (smax). In applied practice, con-
fidence intervals are typically stated at the 95% confidence
level [11]. In other words, 95% of the speeds are regarded as
accurate (within smin or smax). It suggests smax = 7 for GPS
and smin = −80 for FUEL (although the expert’s suggestion
is -40 in the experiments). As illustrated in Figure 17, given
such speed constraints (either -80 or -40 for FUEL), the ac-
curacies are much higher than the smoothing baselines.

Generally, if the speed constraints are set too loose, e.g.,
smin = −160 in Figure 17(a) or smax = 40 in Figure 17(c),
almost everything will pass the examination of speed con-
straints without repairing and thus the repair accuracy (of
Local) is low. On the other hand, if the speed constraints
are too tight, say smax = 0.001 in Figure 17(c), most values
would be regarded as violations to such tight constraints.
With over-repairing, the corresponding repair accuracy is
low too. Nevertheless, the accuracy of the constraint-based
method (Local) is higher than that of the constraint-oblivious
baselines, in a wide range of speed constraints, e.g., either
the expert suggested -40 or the aforesaid statistical sugges-
tion -80 in Figure 17(a). For GPS data in Figure 17(b), there
is also a wide range, from 6 to 21, where the constraint-aware
Local clearly outperforms the constraint-oblivious baselines.
Indeed, in common sense, it is irrational for a person walking
with a speed greater than 21 meters per second.

6.5 Summary of Experiments
We summarize the experimental results as follows: 1) The

accuracy is significantly improved by our proposal (Global
and Local) compared to the existing SWAB, WMA and
EWMA smoothing; 2) Without considering the precise speed
constraints, the existing SD-based repair has much lower ac-

837

 0.001

 0.01

 0.1

 1

 10

 100

2k 4k 6k 8k 10k

T
im

e
 c

o
s
t
(s

)

Data size

(a)

 0

 5

 10

 15

 20

2k 4k 6k 8k 10k

R
e
p
a
ir
 d

is
ta

n
c
e

Data size

(b)

 0

 5

 10

 15

 20

2k 4k 6k 8k 10k

R
M

S
 e

rr
o
r

Data size

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

2k 4k 6k 8k 10k

A
c
c
u
ra

c
y

Data size

(d)

Global
Local

Holistic
Sequential

SWAB(smoothing)
WMA(smoothing)

EWMA(smoothing)

Figure 19: Scalability (STOCK)

curacy than our Global and Local; 3) The proposed Local
approach with online cleaning supports shows orders of mag-
nitude improvement in time costs compared to the Holistic
method; 4) The heuristic update strategy significantly re-
duces the time costs in handling out-of-order arrival; 5) The
adaptive window technique can automatically suggests an
appropriate window size (around 700), which shows rela-
tively low time costs without losing much accuracy.

7. RELATED WORK

Smoothing-based Data Cleaning. The SWAB smoothing
[13] is a linear interpolation/regression-based, online smooth-
ing method of stream data. With a sliding window, SWAB
uses linear interpolation or linear regression to find the ap-
proximating line of a time series. Besides, the moving av-
erage [3] is also commonly used to smooth time series data
and make forecasts. A simple moving average (SMA) is the
unweighted mean of the last k data. This average is used for
forecasting the next value of the time series. Whereas in the
simple moving average the past observations are weighted
equally, a weighted moving average (WMA) multiplies fac-
tors to give different weights to data at different positions in
the sample window, e.g., using the inverse value of time in-
terval as the weight. Moreover, the exponentially weighted
moving average (EWMA) [7] assigns exponentially decreas-
ing weights over time. It is obvious to see that all these
smoothing methods will modify a large number of data points.
Therefore, as the example illustrated in Figure 1, the major
issue of smoothing is the serious damage of the originally
correct data points. One of our major contributions in this
paper is the employment of speed constraints to supervise
the more accurate cleaning. Following the minimum change
principle in constraint-based repairing, the original precise
values are maximally preserved. Consequently, the accu-
racy of our proposed method is much higher than that of
smoothing, as observed in our experimental evaluation.

Constraint-based Data Repairing. To the best knowl-
edge of our knowledge, Holistic cleaning [4] is the only ex-
isting constraint-based technique that can support speed
constraints (expressed by denial constraints). Since the ap-
proach is proposed for repairing the general (tableau) data,
it cannot support the online/integral cleaning over sliding
windows in streaming data. In this sense, one of our contri-
butions in this study is the SCREEN with local optimum,
which supports not only online cleaning but also out-of-order
data arrival. Consequently, as illustrated in the experiments,
our proposal can show up to 4 orders of magnitude improve-
ment in time costs compared with Holistic cleaning.

Moreover, Sequential Dependency (SD) [8] cannot express
precisely the speed constraints. SDs concern the difference
of two consecutive data points in a sequence. As discussed,
data streams often deliver data points in various time inter-
vals. Given different timestamp distances, the value differ-
ence of two consecutive points does not exactly denote the
speed semantics. Owing to such imprecise constraint knowl-
edge, as presented in the experiments, the accuracy of SD
(Sequential) based repair could be much lower compared to
our speed constraint-based proposal. Our another contribu-
tion is the employment of the more accurate speed rather
than the simple value distance in repairing streaming data.

Besides our studied speed constraints, Fischer et al. [5]
propose a nice notation, Stream Schema, for representing
structural and semantic constraints on data streams. The
Stream Schema concerns general constraints with various
semantics such as orderings between attribute values, while
our study focuses only on the specific speed constraints over
numeric values. As a promising future direction, it is inter-
esting to extend the stream data cleaning w.r.t. the more
general Stream Schema constraints.

8. CONCLUSIONS
In this study, we first indicate the inappropriateness of the

smoothing-based stream data cleaning. It could not repair
the dirty data such as large spikes, and even worse may se-
riously damage the originally accurate values. Following the
same line of employing integrity constraints for relational
data cleaning, in this paper, we propose SCREEN, the first
constraint-based stream data cleaning approach. The re-
pairing of imprecise data is guided by the innovative con-
straints on speed. The speed constraint semantics could be
easily captured, such as daily price limit in financial markets,
or fuel consumption limit of devices. With speed constraints,
SCREEN supports online streaming cleaning in linear time,
out-of-order arrival of data points, and high throughput via
adaptive window sizes. In particular, the novelMedian Prin-
ciple can fast identify the local optimum, following the in-
tuition that a solution with the minimum distance (i.e., as
close as possible to each point) probably lies in the middle of
the data points. Experiments on real datasets demonstrate
that our SCREEN can show significantly higher repair accu-
racy than the smoothing-based approach, and up to 4 orders
of magnitude improvement in time performance compared
to the state-of-the-art data cleaning methods.

Acknowledgement
This work is supported in part by China NSFC under Grants
61325008, 61202008 and 61370055; US NSF through grants
CNS-1115234, and OISE-1129076.

838

9. REFERENCES

[1] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD
Conference, pages 143–154, 2005.

[2] G. E. P. Box. Statistics for experimenters: an
introduction to design, data analysis, and model
building. 1978.

[3] D. R. Brillinger. Time series: data analysis and
theory, volume 36. Siam, 2001.

[4] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data
cleaning: Putting violations into context. In ICDE,
pages 458–469, 2013.

[5] P. M. Fischer, K. S. Esmaili, and R. J. Miller. Stream
schema: providing and exploiting static metadata for
data stream processing. In EDBT, pages 207–218,
2010.

[6] Full Version.
http://ise.thss.tsinghua.edu.cn/sxsong/doc/screen.pdf.

[7] E. S. Gardner Jr. Exponential smoothing: The state
of the art–part ii. International Journal of Forecasting,
22(4):637–666, 2006.

[8] L. Golab, H. J. Karloff, F. Korn, A. Saha, and
D. Srivastava. Sequential dependencies. PVLDB,
2(1):574–585, 2009.

[9] C. A. R. Hoare. Quicksort. Comput. J., 5(1):10–15,
1962.

[10] S. R. Jeffery, M. N. Garofalakis, and M. J. Franklin.
Adaptive cleaning for rfid data streams. In VLDB,
pages 163–174, 2006.

[11] H. Z. Jerrold. Biostatistical analysis. Biostatistical
analysis, 1999.

[12] N. Karmarkar. A new polynomial-time algorithm for
linear programming. In STOC, pages 302–311, 1984.

[13] E. J. Keogh, S. Chu, D. M. Hart, and M. J. Pazzani.
An online algorithm for segmenting time series. In
ICDM, pages 289–296, 2001.

[14] S. Kolahi and L. V. S. Lakshmanan. On
approximating optimum repairs for functional
dependency violations. In ICDT, pages 53–62, 2009.

[15] X. Li, X. L. Dong, K. Lyons, W. Meng, and
D. Srivastava. Truth finding on the deep web: Is the
problem solved? PVLDB, 6(2):97–108, 2012.

[16] M. Liu, M. Li, D. Golovnya, E. A. Rundensteiner, and
K. T. Claypool. Sequence pattern query processing
over out-of-order event streams. In ICDE, pages
784–795, 2009.

[17] A. Lopatenko and L. Bravo. Efficient approximation
algorithms for repairing inconsistent databases. In
ICDE, pages 216–225, 2007.

APPENDIX
A. TRANSFORMATION TO LP

We transform the global optimal repair problem in for-
mula (2) to a standard linear programming (LP) problem,
so that existing solvers can directly be employed.

Table 2: Notations

Symbol Description

x sequence

x [i] or xi value of i-th data point in x

t timestamp

s speed constraint

w window size of speed constraint

n length of a finite sequence

x ′ repair of sequence x

xmin
i , xmax

i the lower, upper bound of a valid repair x ′
i

Let ui =
|x ′

i−xi|+(x ′
i−xi)

2
and vi =

|x ′
i−xi|−(x ′

i−xi)

2
. We have

|x ′
i − xi| = ui + vi and x ′

i − xi = ui − vi. It follows

min

n∑
i=1

ui + vi

s.t.
uj − vj + vi − ui − xi + xj

tj − ti
≤ smax, ti < tj ≤ ti + w ,

1 ≤ i ≤ n, 1 ≤ j ≤ n

uj − vj + vi − ui − xi + xj
tj − ti

≥ smin, ti < tj ≤ ti + w ,

1 ≤ i ≤ n, 1 ≤ j ≤ n

ui ≥ 0, vi ≥ 0, 1 ≤ i ≤ n

where ui, vi are the variables in problem solving.

Example 9 (Global optimum, Example 2 continued). Con-
sider again the sequence x and the speed constraints smax =
0.5 and smin = −0.5 with window size w = 2 in Example 2.
According to formulas (3) and (4), the constraint predi-

cates declared w.r.t. smax and smin are:

x ′
2 − x ′

1

2− 1
≤ 0.5,

x ′
4 − x ′

3

5− 3
≤ 0.5,

x ′
2 − x ′

1

2− 1
≥ −0.5, x

′
4 − x ′

3

5− 3
≥ −0.5,

x ′
3 − x ′

1

3− 1
≤ 0.5,

x ′
5 − x ′

4

7− 5
≤ 0.5,

x ′
3 − x ′

1

3− 1
≥ −0.5, x

′
5 − x ′

4

7− 5
≥ −0.5,

x ′
3 − x ′

2

3− 2
≤ 0.5,

x ′
6 − x ′

5

8− 7
≤ 0.5,

x ′
3 − x ′

2

3− 2
≥ −0.5, x

′
6 − x ′

5

8− 7
≥ −0.5.

The corresponding transformation is as follows,

u2 − v2 + v1 − u1 − 12 + 12.5

2− 1
≤ 0.5 . . .

u3 − v3 + v2 − u2 − 12.5 + 13

3− 2
≤ 0.5 . . .

u3 − v3 + v1 − u1 − 12 + 13

3− 1
≤ 0.5 . . .

where u1 =
|x ′

1−x1|+(x ′
1−x1)

2
, v1 =

|x ′
1−x1|−(x ′

1−x1)

2
,

By solving the problem with these constraint predicate (us-
ing LP solvers), the global optimal solution is exactly the re-
pair x′ in Example 2, with x ′

4 = 14 and the minimum repair
distance 4.

Referring to Karmarkar’s algorithm [12], it is sufficient to
conclude that the global optimal repair problem is polyno-
mial time solvable.

Corollary 8. The global optimal repair can be computed in
O(n3.5L) time, where n is the size of sequence, and L is the
number of bits of input.

839

B. GLOBAL OPTIMUM APPROXIMATION
As presented in Corollary 8, solving the global optimal

repair problem in formula (2) by existing LP solvers is still
costly, owing to the large number of speed constraint pred-
icates in formulas (3) and (4). Rather than considering
all the constraint relationships over the entire data set and
eliminating all the violations at one time, existing approxi-
mate repair approaches [4, 14] often greedily repair the data
(pairs) involved in violations, in multiple rounds.

In light of the greedy strategy in data repairing [4], we
consider only the pairs xi, xj that violates the speed con-

straints, i.e., either
xj−xi
tj−ti

> smax or
xj−xi
tj−ti

< smin.

min

n∑
i=1

|xi − x ′
i | (13)

s.t.
x ′
j − x ′

i

tj − ti
≤ smax,

xj − xi
tj − ti

> smax, ti < tj ≤ ti + w ,

1 ≤ i ≤ n, 1 ≤ j ≤ n (14)

x ′
j − x ′

i

tj − ti
≥ smin,

xj − xi
tj − ti

< smin, ti < tj ≤ ti + w ,

1 ≤ i ≤ n, 1 ≤ j ≤ n (15)

Its solution x ′ eliminates the violation between the aforesaid
data points i and j. Since less constraint predicates are
specified, the problem solving could be more efficient.

However, new violations may be introduced between the
modified x ′

i and x ′
k in x ′, where xi, xk are not in violation

before repairing (i.e., the constraint between xi and xk is not
previously considered in formulas (14) and (15)). It needs to
iteratively repair the violations introduced in the previous
round of problem solving. As presented in [4], the iteration
terminates till no new x ′

i is modified in the last round.
The major issue of this approximation is the soundness

of repairing w.r.t. speed constraints, i.e., not all the viola-
tions are guaranteed to be eliminated. The reason is that
the greedy repair could be trapped in local optima, and the
number of violations cannot be further reduced. In other
words, as also observed in the experiments in Section 6, a
large number of data are still in violation to the speed con-
straints in the returned approximate repair results.

Example 10 (Approximation, Example 9 continued). Rather
than enumerating all the constraint predicates in Example 9
for global optimum, the approximation considers only the
pairs of data points in violations, i.e., (x3, x4) and (x4, x5)
as indicated in Example 2 (red lines in Figure 2(a)).

According to formulas (14) and (15), the constraint pred-
icates for approximation method are

x ′
4 − x ′

3

5− 3
≥ −0.5, x

′
5 − x ′

4

7− 5
≤ 0.5,

which is exactly a subset of the constraint predicates in Ex-
ample 9 for global optimum.

Let x ′ = {12, 12.5, 13, 12, 13, 15.5} be the solution w.r.t.
the aforesaid constraint predicates. The modified data points
are x ′

4 = 12 and x ′
5 = 13 denoted by gray points in Figure

2(a). Note that the modification x ′
5 = 13 introduces a new

violation between data points 5 and 6.
Therefore, another round of problem solving is evoked,

with the following constraint predicate:

x ′
6 − x ′

5

8− 7
≤ 0.5.

Let the result be x ′′ = {12, 12.5, 13, 12, 15, 15.5}, where the
modified data point is x ′′

5 = 15. That is, the value is changed
back to the original x5, and the computation is trapped in lo-
cal optima. According to [4], since data point 5 has been
repaired in the previous step and no new data point is mod-
ified in this iteration, the program terminates and leaves the
violation unsolved between x ′′

4 = 12 and x ′′
5 = 15.

C. NORMAL APPROXIMATION FOR ADAP-
TIVE WINDOWS

Consider two window sizes w and w ′ in Figure 7 in Exam-
ple 8. We show the Binomial probability mass function for
B(n, p) and normal probability density function approxima-
tion forN (np, np(1−p)) in Figure 20. For w with n = 4 data
points and p = 0.91, we plot B(4, 0.91) and N (3.64, 0.3276)
in Figure 20(a). For w ′ with n = 10 and p = 0.52, Figure
20(b) illustrates B(10, 0.52) and N (5.2, 2.496).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0 1 2 3 4

P
[X

=
k
]

k

(a) n=4, p=0.91

Binominal p.m.f.
Normal p.d.f.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 1 2 3 4 5 6 7 8 9 10

P
[X

=
k
]

k

(b) n=10, p=0.52

Figure 20: Distribution approximation

In normal approximation [2], if np±3
√

np(1− p) ∈ [0, n],
then n is large enough, and p is far enough from the extremes
of zero or one. That is, the normal approximation is appro-
priate for binomial distribution, e.g., in Figure 20(b). It is
the case for w ′ as presented in Example 8. As shown in Fig-
ure 7, a large number of data points within w ′ are far from
the speed constraints smin and smax. In other words, the
number of data points n is large enough, and p is far enough
from the extremes of 0 or 1 referring to the modeling of pi,j
in formula (12). Since speed constraints are useless in a large
window, according to the intuition of adapting windows, the
window may shrink for computation efficiency.

On the other hand, for w with np± 3
√

np(1− p) 6∈ [0, n],
the rule for evaluating normal approximation indicates that
n is not large enough, and p is not far enough from the
extremes of zero or one (i.e., the normal approximation is
inappropriate as illustrated in Figure 20(a)). By enlarging
w , more data points may be involved under the guard of
speed constraints to ensure their correctness.

D. MORE DETAILS IN EXPERIMENTS
All programs are implemented in Java. Experiments were

performed on a PC with 3.4 GHz CPU and 16 GB RAM.

D.1 Real Dataset Preparation
The STOCK2 dataset records the daily prices of a stock

from 1984-09 to 2010-02, with 12826 data points in total.
Since the STOCK data is originally clean, following the same
line of precisely evaluating the repair effectiveness [1], errors
are injected by randomly replacing the values of some data

2http://finance.yahoo.com/q/hp?s=AIP.L+Histori-
cal+Prices

840

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5000 10000 15000 20000 25000 30000 35000 40000

V
al

ue

Time

Repair

Dirty

Smooth

Dirty
Repair(SCREEN)

Smooth(SWAB)

Figure 21: Example of real data FUEL

La
tit

ud
e

Longitude

Dirty
Repair

Smooth
Truth

Figure 22: Example of real data GPS

points. For example, an error rate 0.1 denotes that 10% data
point values are replaced. For each replaced data point, it
takes a random value between the minimum and maximum
values in the dataset.
The FUEL dataset gathers readings of fuel gauge of a

crane, in every 20-40 seconds when the device is working.
There are total 29750 data points collected in a period of 32
days. The entire sequence is divided into several segments by
refueling, so that the speed constraint on fuel consumption
does not apply across two segments separated by refueling.
For the originally dirty FUEL, since the ground truth of
each data point is unknown, we first filter out the dirty data
points by speed constraints. The remaining data points that
are clean w.r.t. speed constraints perform the aforesaid error
injection (as done in STOCK).
In order to evaluate over a real dataset with true errors

(instead of synthetically injected errors), a real GPS dataset
is collected by a person carrying a smartphone and walking
around at campus. Since we know exactly the path of walk-
ing, a number of 368 dirty points are manually identified
(among total 3441 points in the trajectory). True locations
of dirty points are also manually labeled, as ground truth.
Figures 21 and 22 present two segments of FUEL and

GPS data, respectively, with the original dirty points, the
truth points and the repairs. Similar to the STOCK exam-
ple in Figure 1, large spikes (where a data point suddenly
jumps far away from the path and the following one comes
back soon) also appear in Figures 21 and 22. As shown, the
smooth (SWAB) method is not able to correct such mistakes.
Our proposed SCREEN repair can successfully address all
the spikes, while preserve the original data largely. Conse-
quently, as the results reported in Table 1, the accuracy of

Figure 23: Accuracy measure

our constraint-based Global and Local repairing is signifi-
cantly higher than that of smoothing methods.

D.2 Evaluation Criteria
Let xtruth be the ground truth of clean sequence, xdirty

be the error sequence with faults embedded, and xrepair be
the repaired sequence. We denote Δdist(xrepair, xdirty) the
distance paid in repairing, i.e., the minimum change metric
in formula (2) in the optimization problem formulation.

The rationale of the minimum change metric [1] is built
upon the discipline that people or systems always try to
minimize mistakes in practice, i.e., minimizing the fault dis-
tance Δfault(xtruth, xdirty) between the ground truth and
the dirty data. Following this discipline, it finds a repair
that is closest to the input, i.e., minimizing the repair dis-
tance Δdist(xrepair, xdirty), as an estimate of the truth.

To study the relationship between Δfault(xtruth, xdirty)
and Δdist(xrepair, xdirty), Figures 8(a) and 9(a) observe the
fault distance Δfault(xtruth, xdirty) between the ground truth
and the dirty sequence. As illustrated, e.g., in Figures 8(a)
and (b), the fault distance is roughly proportional to the
repair distance (for those approaches with accurate repairs
such as Global and Local). The results verify the rationale
of using the minimum distance repair to estimate the ground
truth.

However, it is obvious to see that xrepair may not always
be an accurate estimate of xtruth, even though both of them
are minimized w.r.t. their distances to the input xdirty. In
Figure 23(c), although Δdist(xrepair, xdirty) is proportional
to Δfault(xtruth, xdirty), xrepair may be far away from xtruth.
The repair accuracy measures evaluate how close the min-

imum distance xrepair estimates xtruth, e.g., by root-mean-
square error (RMS) [10], which denotes the error distance
Δerror(xtruth, xrepair) between the ground truth xtruth and
the repaired sequence xrepair. The lower the RMS error
Δerror(xtruth, xrepair) is, the closer (more accurate) the re-
pair is to the ground truth.

It is notable that RMS error is not normalized (e.g., into
a range of [0,1] for easy interpretation), and considers only
the xtruth and xrepair but not their distances to the dirty
data xdirty. To this end, we further observe the normalized
accuracy relative to xdirty by

1− Δerror(xtruth, xrepair)

Δdist(xrepair, xdirty) + Δfault(xtruth, xdirty)
,

According to triangle inequality on distances, in the worst
case, we have Δerror(xtruth, xrepair) = Δdist(xrepair, xdirty)+
Δfault(xtruth, xdirty) with accuracy=0. For the best repair
results, Δerror(xtruth, xrepair) = 0, we have accuracy=1.

841

